Predicting Coronary Atherosclerotic Heart Disease: An Extreme Learning Machine with Improved Salp Swarm Algorithm

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Improved Local Coupled Extreme Learning Machine

Local Coupled Extreme Learning Machine (LCELM) is a recently-proposed variant of ELM, which assigns an address for each hidden-layer node and activates the hidden-layer node when its activated degree is less than a given threshold. In this paper, an improved version of LCELM is proposed by developing a new way to initialize the address for each hidden-layer node and calculating the activated de...

متن کامل

An improved extreme learning machine to classify multinomial datasets using particle swarm optimisation

In this paper, we propose a particle swarm-based extreme learning machine (ELM) to classify datasets with varying number of classes. This work emphasises on a couple of important parameters, like maximisation of classification accuracy and minimisation of training time. As a machine classifier, an ELM has been chosen, which is an improvement over back propagation network. For each of the input ...

متن کامل

Medical Dataset Classification: A Machine Learning Paradigm Integrating Particle Swarm Optimization with Extreme Learning Machine Classifier

Medical data classification is a prime data mining problem being discussed about for a decade that has attracted several researchers around the world. Most classifiers are designed so as to learn from the data itself using a training process, because complete expert knowledge to determine classifier parameters is impracticable. This paper proposes a hybrid methodology based on machine learning ...

متن کامل

A Hybrid Kernel Extreme Learning Machine and Improved Cat Swarm Optimization for Microarray Medical Data Classification

All rights, including translation into other languages reserved by the publisher. No part of this journal may be reproduced or used in any form or by any means without written permission from the publisher, except for noncommercial, educational use including classroom teaching purposes. Product or company names used in this journal are for identification purposes only. Inclusion of the names of...

متن کامل

AN IMPROVED INTELLIGENT ALGORITHM BASED ON THE GROUP SEARCH ALGORITHM AND THE ARTIFICIAL FISH SWARM ALGORITHM

This article introduces two swarm intelligent algorithms, a group search optimizer (GSO) and an artificial fish swarm algorithm (AFSA). A single intelligent algorithm always has both merits in its specific formulation and deficiencies due to its inherent limitations. Therefore, we propose a mixture of these algorithms to create a new hybrid optimization algorithm known as the group search-artif...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Symmetry

سال: 2020

ISSN: 2073-8994

DOI: 10.3390/sym12101651